Appendix E. Remote Temperature Sensor Case Study

This appendix describes an application of the proof-of-concept prototype, CODA,
described in Chapter 10, to a remote temperature sensor problem. The specification for
this system consists of a single, data flow diagram and a textual description. The
specification comes from Nielsen and Shumate.! [Nielsenss, Appendix A] This specification
makes an interesting case study because Nielsen and Shumate use Structured Analysis,
augmented with event flows, in lieu of RTSA, to model the problem. This choice limits
the semantic model of the remote temperature sensor in two ways. First, the data flow
diagram, consistent with Structured Analysis, does not include control transformations
and state-transition diagrams. Consequently, the specification also does not include
triggers, enables, and disables. Second, the data flow diagram does not take advantage of
many of the modeling capabilities inherent in COBRA. Instead, Nielsen and Shumate
perform afunctional decomposition that leads to several chains of transformations, where
each transformation represents an aperiodic function. These facts mean that: 1) CODA
must generate a design from a data flow diagram that uses only a subset of the semantic
concepts included within the specification meta-model and 2) CODA must reason about

chains of aperiodic functions to a degree not seen in the previous case studies. The

' The literature contains other treatments of this same problem. [Carter88, Cherry8s,
Howes90, Nielsen87, Sanden89a, Sanden94, Shumate92, Smith93, Y oung82]

560

remote temperature sensor application, then, provides an example where CODA'’s
reasoning abilities provide the designer with only alimited degree of assistance.

E.1 Analyzingthe Specification

Nielsen and Shumate provide a data flow diagram for a remote temperature
Sensor. [Nielsengs, page 278] A designer loads this diagram, exactly as drawn by Nielsen and
Shumate, into CODA and then CODA analyzes the diagram. Figure 71 depicts the
diagram, annotated, as in previous case studies, with the information inferred and €elicited
by CODA.

E.1.1 Evaluating the Original Data Flow Diagram

After loading the remote temperature sensor (RTS) specification, the designer
examines the state and finds the condition of the specification to be unknown. Finding
the classification of concepts to be incomplete, the designer asks CODA to classify
concepts in the specification. After querying the designer about the nature of the
terminators on the diagram, CODA proceeds through the first three stages of
classification without consulting the designer. In the fourth stage of classification,
CODA asksthe designer for assistance to classify a number of transformations.

First, CODA identifies three transformations, Prepare CP ACK, Get Temperature
Reading, and Maintain Temperature Table, likely to represent synchronous functions.
CODA asks the designer to confirm or override these decisions. In all three cases, the
designer confirms the classifications. Next, CODA encounters eight transformations,

Determine Msg Type, Create ICP, Validate ICP, Monitor Periodic Query, Wait for DP

561

[¢ uonouny
SnouoIyauAs]
BIgeL ainjesadwa

ureyurey

[= ai01S]

v

[# 21015 BIEQ]
a|ge ainesadwsa]

—

[= anaLay]

v

[+ uonouny
SnouoIyaUAS]
Aiand
oIpoLdd JoNUON

[® samnea] [= ndino]
lolowioulay) € o
renoig
[= induj]
ainresadwa L

[= sninuns]

[= sninuns]
dol

#aoeuinq
‘awiL

[=18lqo o1
821N8(dAISSed]
Japwowisy L
reubia A1end

[= asuodsay]
ainyesadwa |

[+ uonoun-
SNouoIYaUAS]

da\ atedaid

snououyauAsy]
noawi] Aand

[+ uonouny
snouoIyauAsy]
dOl s1eplfeA

[= sninuns]
Bs
nduj

[= sninuns]
“oN
aouanbas

[¢ uonoun
SnouoIyauAs]
MOV dO asedaid

[+ uonoun-

101 WEM

[+ uonoun4
snouoIysuAsy]
noawiL
OV da 40} e

[= sninuns]
#9deuing

E sninups]
#aoeuin4

[¢ uonoun
SNouoIYIUAS]
Buipeay
aineladwa] 199

[= sminuns]
ainresadwsa |
‘#aoeUINS

[+ uonouny
SnouoIyouAsy]
da maN areald

[= sninuns]
dal

[+ uonoun-
SNouoIYaUAS]
dOlI 8reald

[= reubis]
noawi
puasay

[= reubis]
panieoay
MVYN™

MOV dD

[= uonouny
snouoiyauAsy]
dd pIo puss

dapio

[= sninuns]
da meN

[= sninuns]

[= sninuns]

[= sninwns]

[+ uonoun-
SNouoIYauAS]
adA) Bsy
sulwisea

do

[= sninwns]
MOV da
‘do

[= 19900 induy .
da 99INa(aNISSed] M_loﬁm“\m_ | [@samnaa]
[= jeubis] induy ‘4o JauueyD indu|
panB9Y 1SOH 31829y
MOV da
[=1081q0 indino
soneq anssed] | Eindino] | [@ samneg]
ndino MOV dO |auueyd INdino
\4 1SOH Jwsuel | ‘dd

[= sninwis]
ddpio

[= sninuns]
da meN

[= uonoun4
snououyauAsy]
da meN 199

Figure 71. Original RTS Data Flow Diagram as Analyzed by CODA

562

ACK Timeout, Wait for Query Timeout, Create New DP, and Prepare IDP, that can be
more accurately classified based on application-specific knowledge that might be
available to the designer. In each of these eight cases, CODA consults the designer, who
provides the requested information. Based on this information CODA classifies the
transformations. After classifying all elements on the data flow diagram, CODA €licits
any additional information that might help with design generation. In this example, the
designer provides no additional information. Next, the designer attempts to verify the
specification’s utility. Unfortunately, though all specification elements are classified
fully, some axioms remain unsatisfied.

E.1.2 Correcting and Reevaluating the Data Flow Diagram

By examining the notices logged by CODA, the designer finds that three
transformations, shaded in Figure 71, violate axioms for concepts of their type. One
transformation, Receive Host Input, classified as a Passive Input Device Object, violates
two axioms. First, any Passive Input Device Object must receive a Stimulus or a Signal.
Second, any Passive Input Device Object must emit a Response. Examination of Figure
71 reveds that the transformation, Receive Host Input, does indeed violate these axioms.
Further, after reviewing the textual specification concerning this transformation, the
designer realizes that the devices in the problem are all asynchronous devices, not passive
devices, as classified by CODA. These problems arise because Nielsen and Shumate do

not depict the event flows from the external devices to the appropriate transformations.

563

The designer corrects these deficiencies simply by adding three event flows, one from
each Terminator to its corresponding Interface Object, to the data flow diagram.

Another transformation, Wait for DP ACK Timeout, classified as an
Asynchronous Function, violates two axioms. First, any transformation requires at least
one incoming arc. Second, any function requires an incoming activator, that is, a Signal,
a Stimulus, a Timer, or a Control Event Flow. A review of Figure 71 verifies that the
transformation in question, Wait for DP ACK Timeout, violates these two axioms. Upon
reading the textual specification for the remote temperature sensor, the designer discovers
that the transformation, Wait for DP ACK Timeout, serves only to generate a periodic
event flow to another transformation, Send Old DP. The specification meta-model,
allows this requirement to be modeled easily with a Timer event flow directly into the
periodic transformation, Send Old DP, from the system. Here, then, the designer
eliminates one transformation, Wait for DP ACK Timeout, from the data flow diagram,
and changes the source for one event flow, Resend Timeout, to be "System™.

Turning to the third, ill-defined transformation, Monitor Periodic Query,
classified as a Synchronous Function, the designer finds that one axiom is violated: Each
function requires an incoming activator. The transformation, Monitor Periodic Query,
has no means of activation. Upon reviewing the textual specification, the designer
discovers that the transformation is intended to operate periodically. The specification
meta-model allows this requirement to be specified directly by adding a Timer event

flow, Check Furnaces, from the " System” to the transformation, Monitor Periodic Query.

564

In addition to correcting these specification errors, the designer aso labels each
transformation in the data flow diagram with a unique number. These numbers, while
optional, provide a means of tracking the decomposition hierarchy, should some future
version of the specification be further decomposed.

Figure 72 gives the amended data flow diagram, annotated with information
inferred and elicited by CODA. The designer loads the amended specification and then,
finding the classification of specification elements to be incomplete, asks CODA to
classify the specification. After inquiring about the nature of terminators in the
specification, CODA proceeds straight through the initial stages of classification. Upon
reaching the final stage of classification, CODA makes a tentative classification of one
transformation, Maintain Temperature Table, as a Synchronous Function. CODA asks
the designer to confirm or override this decision. After reading the textual specification
accompanying the data flow diagram, the designer decides that the transformation
requires substantial execution time and should be an Asynchronous Function; thus, the
designer overrides CODA's tentative classification. Also during the final classification
stage, CODA finds that some application-specific knowledge can help to classify more
accurately eight transformations, Determine Msg Type, Create ICP, Vaidate ICP,
Prepare CP ACK, Wait for Query Timeout, Create New DP, Prepare IDP, and Get
Temperature Reading. CODA asks the designer to supply, where known, the helpful
information. In this example, the designer supplies the requested information and CODA

decides how to classify each transformation in question.

565

[¢ uonoun4 [+ uonoun-
snouoysuAsy] [+ uonouny [= smnuns] [+ uonoun- m:ocopco: As]
A [= sninwis] SnouoIyauAsy] BsIy SNouoIYauAS] [= sninwis] e
aIn M_LMM.Um <! mmm e indui mv@wh @ 8dAL BSIn

) L dOI 81eplfeA dOl 8eald aulwisleq
urejure |\
[= a1015]
+ = m:\:w:.cw\
—_— v [= Eﬁ”_si SOV dd
‘d0
[# au01s EIRA] souenbos

a|qel ainyesadwal

—

[= anaiay] [, "s28s G pousd] —
% [= 1wy]

Sa0RUINS %98YD

[= uonoun4
oIpoLdd]

[+ uonoun4

[= sninwns] snouoyauAsy]

8
#9o%euing 6
Aiand ‘awi noawi] A1and
olpoLiad 10} Hepn
JOJNUON :

[= 1dnusyuj]

—— dnua) =199/90
l0suss Ol 8dneg [= sninwps]
[@ aainag] [= ndino] snououyauAsy] #aoeu n 5
lalewownay L ?lmomE: TT
renbia # 4 JEETNIETT
[x soes sad 0T reubig E sninuns]
L mmwm‘zwm\wt Kiand #ooeuInd
ainesadwa [= asuodsay] [+ uonouny

snouo.yauAs]
ot
Buipeay
alneladwa
189

ainyesadwa L

[= sninwns]
ainyesadwsa L
‘gaoeuIny

dal sredaid

[+ uonoun- [+ uonouny
snouo.yauAs] [= sninwns] snouo.yauAsy]
T dal €1

dA MaN areald

[+ uonouny
SNouoIyIUAS]
9
MOV dD
asedalid

N\

[« "s0as z pouad]

[=swit]
noswi
puasay

[x 085 48d 0T

_ [= 10800 oy e/
Wmmmmwmm nduj sameg & mu oﬁmm\m -
- SNOUOIYIUAS!

MVYN da M i ‘dD [®@ 221n8q]
[= reubis] 1ndu] 1s0H JauueyD Indu|
pani@oay angoay [=1dnusy] |
MOV dd 1dnuaul xy

[= sninuns] [« "09s 18d 0T

MOV dD

orey ‘xew]

[=18lq0 b —
naino saimag [=dnusyu]
SnuooUASY] wdnusu) XL [@ samnaq]
T Jsuueyd Indino
ndinoO 1soH

E indino]

MoV 4o

jwsuel

‘da
[= sninwns]
danpio

[= uonoun4
aipoLad]
ST [= sninwins]
dd pIO puss dd maN

[= sninuns]
dapio

[= uonouny
[= sninwns] snouoyauAsy]
da meN 4

dd meN 119

Figure 72. Amended RTS Data Flow Diagram as Analyzed by CODA

566

E.1.3 Eliciting Additional I nformation

After completing concept classification, CODA elicits additional information
from the designer as required to help generate a concurrent design. Each of two timers,
one for Send Old DP and one for Monitor Periodic Query, requires a period. Perusa of
the textual specification indicates that the appropriate values are two and five seconds,
respectively. CODA aso asks the designer to supply maximum event rates for the three
device-interface objects, Receive Host Input, Query Digital Thermometer, and Transmit
Host Output, shown in the data flow diagram. The values supplied derive from the
estimated channel rates and message sizes for each device.

Next, CODA asks the designer to supply any specification addenda that can help
generate an appropriate, concurrent design. First, CODA displays a list of the
asynchronous and periodic functions in the specification and asks the designer to identify
any subsets of those functions that cannot execute at the same time. After examining the
diagram, the designer decides that operations that update and read from the temperature
table must be conducted with mutual exclusion in order to avoid reading incorrect
information from the data store. For this reason, the designer indicates that two
functions, Maintain Temperature Table and Monitor Periodic Query, should be placed
together in an exclusion group. Second, after reading the textual specification, the
designer finds that the host and remote computers use a stop-and-wait protocol to
exchange data packets. This means that the remote temperature sensor either sends a new

data packet, or resends an old data packet, but never performs both functions

567

simultaneously. For this reason, the designer indicates that the two related
transformations, Get New DP and Send Old DP, should be included in an exclusion
group.

To finish analyzing the specification, CODA elicits, and the designer declines to
provide, any additional specification addenda. The designer verifies the specification’s
state as classified completely, with all axioms satisfied. From this point, a design can be
generated.

E.2 Generating the Design

The designer decides to begin the design-generation process by structuring tasks
from the data flow diagram. First, the designer loads a target environment description
that ssimulates the facilities available in Ada, that is, an environment without message
gueuing services. The designer selects this environment because Nielsen and Shumate
target their design for an Ada run-time system.

E.2.1 Structuring Tasks

Next, the designer initiates task structuring. After identifying candidate tasks,
CODA attempts to alocate the remaining transformations to tasks. For a number of
synchronous functions, CODA recognizes that application-specific knowledge might lead
to better decisions. In these instances, CODA attempts to €elicit any available insights
from the designer. For example, CODA explains that a transformation, Get Temperature
Reading, might be alocated to the same task as one of two, connected transformations,

Wait for Query Timeout and Query Digital Thermometer. CODA then asks the designer

568

if the transformation in question, Get Temperature Reading, should be alocated to the
same task as one or the other of the connected transformations. If the designer can
provide this information, then CODA can make a better decision about allocating the
transformation, Get Temperature Reading. Two other transformations, Prepare CP ACK
and Determine Msg Type, each classified as a Synchronous Function, might also be
allocated to one of several tasks. For each of these transformations, CODA asks the
designer for, and receives, guidance.

After completing the allocation of transformations to tasks, CODA considers
combining tasks and creating resource monitor tasks. Next, CODA invites the designer
to review and rename tasks in the design. The designer accepts the invitation. Upon
completion of task structuring, the designer saves the design and checks the state of the
design process. Table 49 gives the results of CODA'’s task structuring, including: the
tasks created, the transformations allocated to each task, and the criterion used in

determining each allocation.

569

Table 49. Task Structuring Decisions for Remote Temperature Sensor

Task Transformations Structuring Criterion

Create New DP Create New DP Asynchronous Internal Task
Wait for Query Timeout Asynchronous Internal Task

Create IDP Get Temperature Reading |User-Specified Cohesion

Prepare IDP

Sequential Cohesion

Anayze Host Input Vaidate IDP Asynchronous Internal Task
Prepare CP ACK User-Specified Cohesion
DT Handler Query Digital Thermometer |Asynchronous Device I/O
Task
Tx Host Msg Transmit Host Output Asynchronous Device I/0O
Task
Rx Host Msg Receive Host Input Asynchronous Device |/O

Determine Msg Type

Task
User-Specified Cohesion

Create ICP Sequential Cohesion
Determine Host Output Get New DP Asynchronous Internal Task
Send Old DP Periodic Internal Task

Mutually Exclusive
Execution

Manage Temperature
Reading

Maintain Temperature Table
Monitor Periodic Query

Asynchronous Internal Task
Periodic Internal Task
Mutually Exclusive

Execution

570

E.2.2 Defining Task Interfaces

After structuring tasks, the designer decides to define the interfaces between tasks
in the design. CODA allocates the external interfaces for each task and for two inter-task,
event flows, DP ACK and DP NAK. CODA takes these decisions without consulting the
designer. Next, when allocating data flows between tasks, CODA consults with the
experienced designer regarding five instances where ambiguity exists. In each instance,
CODA cannot establish whether the sending task must synchronize with the receiving
task. An experienced designer might be able to provide the required information. If not,
then CODA makes a default decision to map each data flow to a queued message. In
each of the five instances in this case study, the designer provides the missing
information regarding inter-task synchronization, and CODA allocates each data flow to
an appropriate message type.

CODA then detects, that at least one task receives queued messages from multiple
source tasks. Given an experienced designer, CODA invites the designer to consider
assigning varying priorities to appropriate queued messages. In their design, Nielsen and
Shumate do not use multiple priorities; however, for this case study, the designer assigns
varying priorities to queued messages received by one task, Tx Host Msg. The designer
gives outgoing command-packet acknowledgments preference ahead of outgoing data
packets. This choice alows a demonstration of CODA's ability to simulate priority

gueues when the target environment provides no message queuing services. CODA

571

allocates appropriate queuing mechanisms and then invites the designer to review and
rename task-interface elements. The designer accepts the invitation.

E.2.3 TheTask Architecture

The task architecture for the remote temperature sensor, as generated by CODA,
appears as shown in Figure 73. Figure 73 depicts the state of the design after structuring
tasks and defining task interfaces, but before structuring modules and integrating the task
and module views.

E.2.4 Structuring Modules

To continue with the design, the designer needs to structure modules. CODA
handles most module structuring decisions without consulting the designer; however,
ambiguities can arise. For example, a transformation, representing a synchronous
function, might be linked with one or more other transformations, previously allocated to
an information hiding module. In such situations, CODA can decide to allocate a
transformation to an existing module, based on sequential or functional cohesion, or can
form anew module. Lacking any other information, CODA forms a new module. Given
an experienced designer, however, CODA €licits any guidance the designer cares to
provide. The current case study contains five, ambiguous transformations. Determine
Msg Type, Create ICP, Prepare CP ACK, Get Temperature Reading, and Prepare IDP.
For each of these transformations, CODA asks the experienced designer whether to
include the transformation into an existing module or whether to form a new module

based on the transformation. For three transformations, Determine Msg Type, Prepare

572

J3|pueH 1d

1sanbay
Ja|pueH 1d

Aday
JsjpueH 14

—

1dnusju| Josuss

anjeladwa |

——————————Jp #30rUINH

Buipeay ainresadwa abeuep

1sanbay

—|n_n__ deald

ddal srealid
puss
dal
sdal tayng
anand
dal
Aday
EIEREN]
1sanbay
ENELEN] lwsuensy
1SOH
o] Bsy

da maN ajeald

puewwod
Juswabeuey
ainresadwa |

saoeuINd %98YD

1SOH
woi4 ereg

H

1sanbay
EIEREN]

nduj 1soH azAjeuy

puas

\,_umw_

m>_mum

ﬂ ,w_ _ _moIEoEmmE
aNano

xmﬁoz

s1oed xy 1ayng

sisenbay/induj 1soH 8zAfeuy

[puss

1dnusiul xy

—

BSIN 1SOH X

P3AIRI3Y MVN dd
‘pain8day IV da

1SOH

1sanbay
BAIB03Y

C

1SOH 0] Bspyy

-
puss L

NdinQ 1soH aulwiaeg

m:u:%

siasfoed XL Jayng

ydnusiu) X1

Aday
anR29Y

BSN 1SOH XL

Task Architecture for the Remote Temperature Sensor Design

Figure 73

573

CP ACK, and Prepare IDP, the designer indicates that a new module should be formed.
The designer aso indicates that each of the two remaining transformations, Create ICP
and Get Temperature Reading, should be included into the same module as a previously
alocated transformation, Determine Msg Type and Wait for Query Timeout,
respectively.

After structuring modules and determining module operations, CODA invites the
designer to review and rename these new design elements. The designer accepts the
invitation. Table 50 reports the results of the module structuring for the remote
temperature sensor.

E.2.5 Integrating Tasks and M odules

The designer need only integrate the task and module views in order to complete
the design. When asked, CODA achieves this integration without consulting the
designer.

E.2.6 The Completed Design

Figure 74 depicts a software architecture diagram for the completed design, as
generated by CODA. The software architecture diagram builds upon the task architecture
diagram, shown previously as Figure 73, adding the modules created during module
structuring. In the resulting design, tasks share no modules. Nielsen and Shumate do not
generate modules; instead, because their target environment is an Ada run-time system,

they employ a set of guidelines to identify Ada packages. For this reason, comparisons

574

between CODA's design and the design given by Nielsen and Shumate must be limited to

the task architecture.

Table 50. Module Structuring Decisions for Remote Temperature Sensor

Module Transformation/Data Store Structuring Criterion
Temperature Table Data-Abstraction Module
Temperature Table Monitor Periodic Query Read Operation Of DAM
Maintain Temperature Table |Update Operation Of DAM
Digital Thermometer Query Digital Thermometer |Device-Interface Module
Send Message Transmit Host Output Device-Interface Module
Read Message Receive Host Input Device-Interface Module
Data Packet Create New DP Algorithm-Hiding Module
Wait for Query Timeout Algorithm-Hiding Module
Temperature Checker Get Temperature Reading Designer-Allocated
Function
ICP Vaidate ICP Algorithm-Hiding Module
Manage Unsent DPs Get New DP Algorithm-Hiding Module
Manage Sent DPs Send Old DP Algorithm-Hiding Module
Input Analyzer Determine Msg Type Algorithm-Hiding Module
Create ICP Designer-Allocated
Function
CPACK Prepare CP ACK Algorithm-Hiding Module
IDP Prepare IDP Algorithm-Hiding Module

575

1slpueH 1a

Japwowlayl
reubia

1senbay
Is|pueH La

= =

JENRETe}
dai alnresadwa]

dai 8yeald

puas

L

da
a [
dal

Kiday
ELCREN]
jsenbay
EICREN]

=

19¥0ed
eleqg

da maN areald

1dnuaiuj Josuss

ainesadwa |

—————————— #30RUINS

Aday
Js|pueH La
Buipeay ainresadwa) abeuep

1sanbay s|qel sa%euUINd %28y
ddl sreaid ainyesadwa]
puewwod
Juswabeuey
ainyesadwe |
1soH
wold ereq

= =

Aday
anBoRY
150H wioi Bsy

sdal seyng
Movdd dOl — m S
1sanbay JazAleuy obessay 1dnusiul xy
ENEREN] xm.w.._:wm:oI ndu peay AH
siayoed xy 1ayng
nduj 1soH azAjeuy BSIN 1SOH XY
puss
PaAIBd8Y MVN dd
Jjwsuensy - ‘PaINe23Y MOV da
1SOH
o] eleqg
@ @ sysanbay/induj 1soH azAreuy W\w_mwwmm
5 sda sda | 150H 01 B _ _ [abessany
a1 m..u”__z was uasun s | pul Ao _U puss —
abeuepy abeuep XL 1S0H ana38Y AH
s1ayoed X1 Jayng
ndinQ 1soH aulwaRg BSIN 1SOH XL

Figure 74. The Completed Design for the Remote Temperature Sensor

576

The task architecture given in Figure 73 aligns well with the design proposed by
Nielsen and Shumate. Two essential differences appear between the two designs. First,
CODA created a queued-message interface for messages received by one task, Tx Host
Msg, for which Nielsen and Shumate defined two, tightly-coupled message interfaces.
Because the target environment does not provide message-queuing services, CODA'’s
decision leads to an additional, priority-queue-control task, Buffer Tx Packets, not
present in the design by Nielsen and Shumate. The second difference aso relates to
intermediary tasks. Nielsen and Shumate identify a task to relay DP ACK signals from
the Rx Host Msg task to the Determine Host Output task. CODA assumes that a target
environment permitting inter-task signals provides an inherent signaling mechanism;
thus, CODA does not generate arelay task for the DP ACK .2

E.3 CODA Unaided

When a designer cannot provide assistance in cases where CODA can benefit
from such assistance, CODA takes default decisions as needed to generate a concurrent
design. The data flow diagram for the remote temperature sensor, specified using
Structured Analysis, leads CODA to seek the designer’s assistance in many situations,
during both specification analysis and design generation. If the designer could not
provide any help, then what design would CODA produce from the data flow diagram for

the remote temperature sensor? To answer this question, CODA generates another design

>To more closely model an Ada environment, the target environment description
might indicate that no software signals are permitted between tasks. 1n such acase,
CODA would map the events, DP ACK and DP NAK, onto atightly-coupled message;
thus, arelay task would not be generated by CODA under any circumstances.

S77

from the amended data flow diagram, as shown in Figure 72, for the remote temperature
Sensor.

E.3.1 Analyzing the Specification

The analysis of the specification proceeds straightforwardly. During the
classification of concepts, CODA queries the designer for assistance in classifying the
terminators and the ambiguous aperiodic functions. The novice designer provides no
assstance. In these cases, CODA classifies the terminators as devices and the
ambiguous, aperiodic functions as asynchronous functions. Next, CODA €licits
additional information. CODA forces the novice designer to provide periods for two
timers, Resend Timeout and Check Furnaces, and to provide maximum rates for the three
external inputs to the system. The designer must obtain this information from the textual
specification accompanying the data flow diagram. CODA offers the novice designer
opportunities to enter specification addenda. The novice designer provides no addenda.

E.3.2 The Completed Design

Next, CODA generates a concurrent design, using the same Ada target
environment as before. In this case, CODA makes all design decisions without
consulting the designer. CODA consults the designer only to elicit names for new design
elements. The resulting design consists of 27 tasks, one for each of the 15
transformations on the data flow diagram and one to control each of the 12 queues
required for the design, and 14 modules. One data-abstraction module consists of two

transformations, Maintain Temperature Table and Monitor Periodic Query, and a data

578

Aidey
anioay

dOl areplleA

1sonbay
EUEREN]

1dnuau xy

1dnusju| Josuss

ainjesadwa | dlqeL 4ol aeald
alnresadwa 1SoH
#aoeuiny urelurey SisquInN woi4 eyeq

souanbag

slqel
ainyesadwa |

1senbay
ana0aY

Adey
anioay

(o [ssonboy 1senbay I_l_ Aidoy

aneoay ENCLEN aneoay
anoay

I

Ml

puss

BSIN 1SOH XY

Jarswowsy
OV dO aredald

1senbay
Kiand

Kiand

fidoy
aneoay

Ly oos

Kisnd
dlpouad
JoyNuoN

S# 8oeUINg

Aidey

anBoay —_

s1eoed Xy

ainyesadwa |
pesy

Bsi apodaa

1senbay
anzoay

1senbay

ENEREN] sadeuind %o09yd

puss

Aday
anBoay MVN dd
sbuipeay
noawi
fuond> _
d Kiend
oo nwsuenay
sanba. da s1@yoed XL
fidoy ,w>_8wm snoinald
oo pusssy fidoy 1sanbay
puss an@oay oneoy
1sonbay fidoy
dai 2A1200Y anoay
aredaid MOV dd
BSIN 1SOH X1
sdaes puas A 4
b
sdQ feusau M\mmumm puos sdq BuloBing M\NMHM _|T HQn_mM“_ 1S0H
XON
dda 0] eje
JewuoS] [puss 1dnusiul X1 L Bleq
\ / / u Aidoy
fidoy an208Y
ELEREN]

Figure 75. Design Generated, Unaided, by CODA for the Remote Temperature Sensor

579

store, Temperature Table. CODA allocates each of the remaining 13 transformations to
an independent module. Figure 75 illustrates the task architecture for this design.

For the remote temperature system, CODA, unaided by an experienced designer
during both the concept classification and the design generation, produces a less efficient
design than is the case when CODA receives assistance. The design shown in Figure 75
calls for 27 tasks rather than the 11 tasks needed for the design shown in Figure 73. In
addition, although not shown in Figure 75, CODA, unaided, generates a design calling for
14 modules, while, as shown in Figure 73, with help from an experienced designer,
CODA created a design requiring only 12 modules. These results illustrate that CODA
generates more efficient designs when a designer provides help during the classification
of aperiodic functions and when an input data/control flow diagram takes advantage of

the semantic concepts from the specification meta-model.

